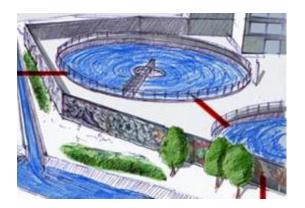
^b UNIVERSITÄT BERN

Stockholm World Water Week 2017 Policy strategies for contaminants of emerging concern in water

Seminar "Opportunities and limits to water pollution regulations: Session II"

Dr. Florence Metz

Institute of Political Science University of Bern


Overview

- 1. Contaminants of emerging concern as **a new challenge** for water protection policy
- 2. The **Precautionary Principle** as a means to deal with **uncertainties**
- **3. Policies** for the reduction of contaminants of emerging concern to water quality
- 4. **Decision-makers' perspective**: Results from an international survey with public, private, and civic actors about preferences regarding policies for the reduction of CECs

1. CECs CHALLENGE TRADITIONAL POLICY APPROACHES

^b UNIVERSITÄT BERN

Wastewater treatment as traditional response to water quality issues

Challenges

 Contaminants that are not vulnerable to conventional wastewater treatment are steadily transported into the aquatic environment.

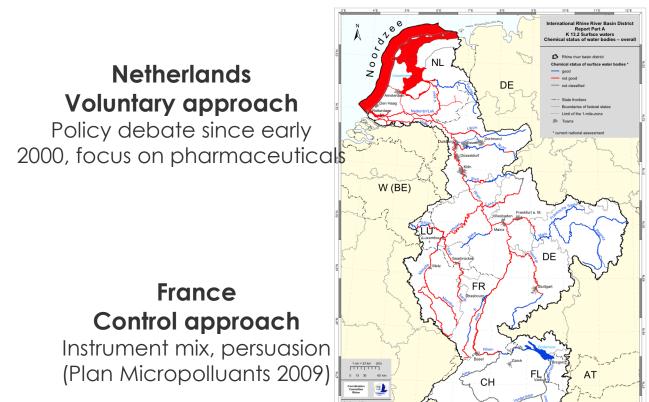
Environmental quality norms (EQN) as

traditional response to water quality issues

- Compound-by-compound approach
- Precondition: detection, risk assessment, deduction of EQN

Challenges due to uncertainties

- Diversity of contaminants, sources, inputs
- "Unknowns"
- "Cocktail effect"
- Constant engineering of new substances


2. THE PRECAUTIONARY PRINCIPLE

- ⁶ Universität Bern
- The Precautionary Principle justifies political action where suspicion exists, but uncertainties remain about potential risks to humans or the environment
- Radical, inherent uncertainties
 - Not an absence of knowledge, but
 - Occurrence and damage of an event are incalculable
- "Uncertainty paradox": Current policy approaches follow the scientifictesting-and-regulation-paradigm and are ill-adapted to deal with uncertainties inherent to CECs

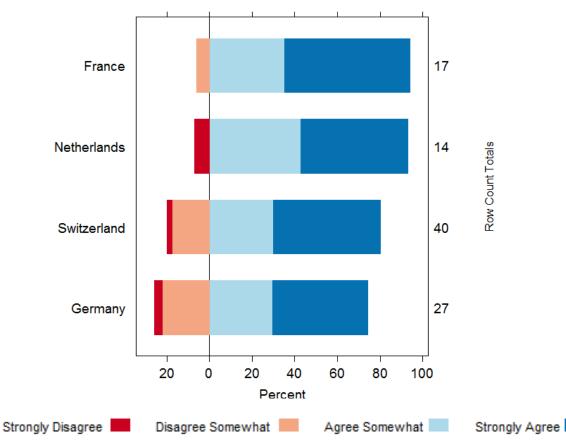
3. POLICIES IN PRACTICE

^b UNIVERSITÄT BERN

Germany Control approach

Environmental Quality Norms for 162 substances (OGewV 2011)

> Switzerland End-of-pipe approach

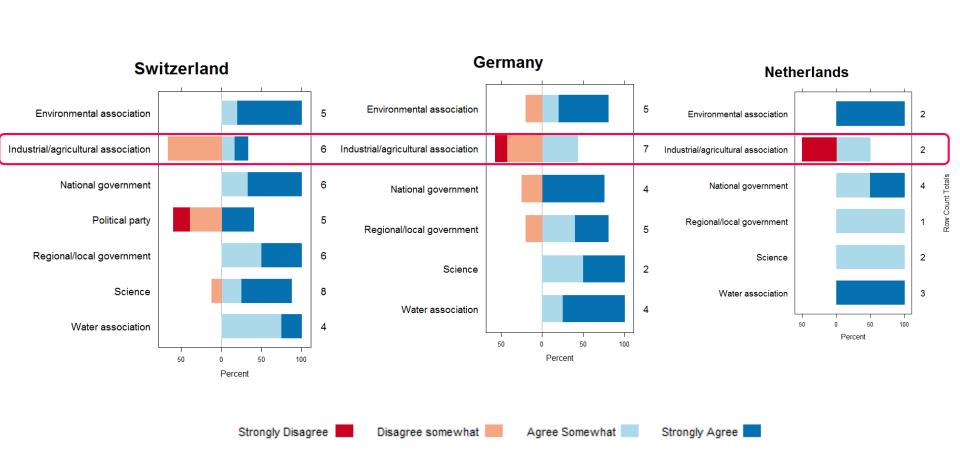

Technical standard Waste water charge Subsidies (GSchG/V Revision 2014/15

$u^{\scriptscriptstyle b}$

4. HOW DO ACTORS DEAL WITH UNCERTAINTIES?

b UNIVERSITÄT BERN

 209 surveyed state and non-state actors participating in policy-making on CECs, April 2013 – August 2014


Support for the Precautionary Principle

UNIVERSITÄT

BERN

SUPPORT FOR PRECAUTIONARY MEASURES BY ACTOR TYPE

PREFERENCES FOR POLICY APPROACHES

17

41

14

27

Disagree Somewhat

100

Row Count Totals

Support for Source-directed Measures

France

Switzerland

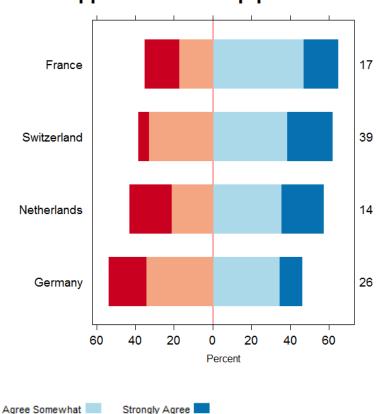
Netherlands

Germany

0

20


40

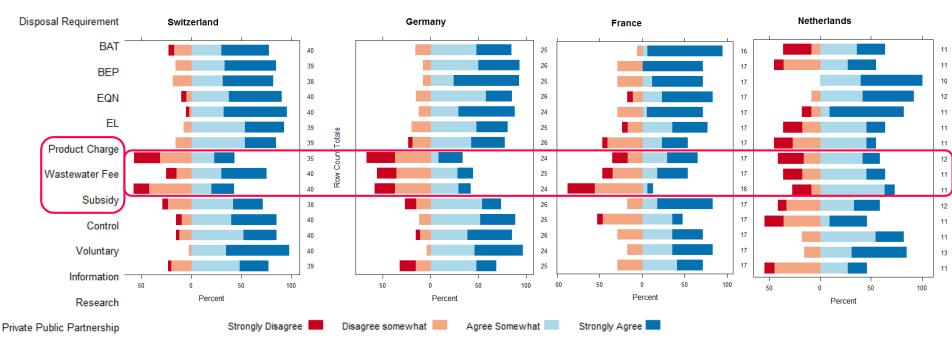

Percent

60

Strongly Disagree

80

^b UNIVERSITÄT BERN


INSTRUMENT PREFERENCES

^b UNIVERSITÄT BERN

h

Authorization

Use Restriction

• Acceptance depends on cost efficiency of solutions.

CONCLUSIONS

- 1. CECs challenge traditional policy responses to water quality issues.
- 2. The precautionary principle is an appropriate strategy to deal with uncertainties inherent to CECs.
- 3. Current policies build on scientific-testing and regulation paradigm, which hampers adopting measures for the reduction of CECs.
- 4. There is support for precautionary, source-directed policies on behalf of decision-makers.

Need for a reduction of regulatory boundaries to apply the precautionary principle.

b UNIVERSITÄT BERN

These are only back-up slides in case of questions

A TOOLBOX OF POLICY RESPONSES IN WATER PROTECTION

Definition: *policy instruments* = single means through which political goals can be reached

	Source-directed	End-of-pipe	Control
Regulatory instruments	 Substance bans Restrictions Authorizations Best environmental practices(BEP) 	 Best available technologies (BAT) Technical standards Disposal requirements 	 Environmental quality norms (EQN) Emission limits Registries Monitoring Reporting
Economic instruments	 Product charges Substance charges Subsidies for "green" action 	 Effluent/emission charges Subsidies (e.g. for improved wastewater treatment) 	Subsidies for monitoring
Voluntary instruments	 Information campaigns (e.g. on waste disposal) Voluntary agreements between private & public 	 Advice/consulting about BAT Voluntary agreements on wastewater treatment 	 Voluntary agreements on control measures